Growth, Grazing, and Starvation Survival in Three Heterotrophic Dinoflagellate Species.
نویسندگان
چکیده
To assess the effects of fluctuating prey availability on predator population dynamics and grazing impact on phytoplankton, we measured growth and grazing rates of three heterotrophic dinoflagellate species-Oxyrrhis marina, Gyrodinium dominans and Gyrodinium spirale-before and after depriving them of phytoplankton prey. All three dinoflagellate species survived long periods (> 10 d) without algal prey, coincident with decreases in predator abundance and cell size. After 1-3 wks, starvation led to a 17-57% decrease in predator cell volume and some cells became deformed and transparent. When re-exposed to phytoplankton prey, heterotrophs ingested prey within minutes and increased cell volumes by 4-17%. At an equivalent prey concentration, continuously fed predators had ~2-fold higher specific growth rates (0.18 to 0.55 d-1 ) than after starvation (-0.16 to 0.25 d-1 ). Maximum specific predator growth rates would be achievable only after a time lag of at least 3 d. A delay in predator growth poststarvation delays predator-induced phytoplankton mortality when prey re-emerges at the onset of a bloom event or in patchy prey distributions. These altered predator-prey population dynamics have implications for the formation of phytoplankton blooms, trophic transfer rates, and potential export of carbon.
منابع مشابه
Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores
Recent field studies indicate that dinoflagellates are key degraders of copepod fecal pellets. This study is the first to publish direct evidence of pellet grazing by dinoflagellates. Feeding and growth on copepod fecal pellets were studied for both heterotrophic (4 species) and mixotrophic dinoflagellates (3 species) using a combination of classic incubation experiments and video recordings of...
متن کاملVariability in protist grazing and growth on different marine Synechococcus isolates.
Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechoco...
متن کاملGrazing of heterotrophic dinoflagellate Noctiluca scintillans (Mcartney) Kofoid on Gymnodinium catenatum Graham.
A dinoflagellate bloom ("red tide" event) dominated by the toxic Gymnodinium catenatum Graham (Gymnodiniales, Dinophyceae; 99.7%) and the noxious Noctiluca scintillans (Mcartney) Kofoid (Noctilucaceae, Dinophyceae; 0.3%) was observed in Bahia de Mazatlán Bay, México, on 24-26 January 2000. Photographic and microscopic analysis of samples during such an event, allowed us to collect evidence of a...
متن کاملFeeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria.
We investigated the feeding of the small heterotrophic dinoflagellates (HTDs) Oxyrrhis marina, Gyrodinium cf. guttula, Gyrodinium sp., Pfiesteria piscicida, and Protoperidinium bipes on marine heterotrophic bacteria. To investigate whether they are able to feed on bacteria, we observed the protoplasm of target heterotrophic dinoflagellate cells under an epifluorescence microscope and transmissi...
متن کاملIntraspecific facilitation by allelochemical mediated grazing protection within a toxigenic dinoflagellate population.
Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of eukaryotic microbiology
دوره 64 2 شماره
صفحات -
تاریخ انتشار 2017